CANNOT_CONVERT_TYPE ClickHouse error¶
This error occurs when ClickHouse cannot automatically convert between incompatible data types. It's common when comparing different types, using functions with wrong arguments, or inserting data with type mismatches.
The CANNOT_CONVERT_TYPE
error in ClickHouse (and Tinybird) happens when the system cannot automatically convert between incompatible data types. This typically occurs when comparing different types, using functions with arguments of the wrong type, or when inserting data that doesn't match the expected column types.
What causes this error¶
You'll typically see it when:
- Comparing different data types in WHERE clauses
- Using functions with incompatible argument types
- Inserting data with type mismatches
- Performing operations between incompatible types
- Using wrong data types in JOIN conditions
- Passing incorrect types to aggregate functions
- Type casting operations fail
- Array operations with mixed types
ClickHouse is strict about type conversions. Use explicit CAST functions when you need to convert between types.
Example errors¶
Fails: comparing different types
SELECT * FROM events WHERE user_id = '123' -- user_id is UInt64, '123' is String -- Error: Cannot convert type String to UInt64
Fails: function with wrong argument type
SELECT toDate('2024-01-01') as date WHERE date > 123 -- date is Date, 123 is UInt64 -- Error: Cannot convert type UInt64 to Date
Fails: type mismatch in JOIN
SELECT * FROM users u JOIN events e ON u.id = e.user_id WHERE u.id = 'user_123' -- u.id is UInt64, 'user_123' is String -- Error: Cannot convert type String to UInt64
Fails: array with mixed types
SELECT [1, '2', 3.0] as mixed_array -- Error: Cannot convert type String to UInt64
How to fix it¶
Use explicit type casting¶
Convert types explicitly using CAST functions:
Fix: explicit type casting
SELECT * FROM events WHERE user_id = CAST('123' AS UInt64)
Fix data type mismatches¶
Ensure data types match your schema:
Fix: correct data types
SELECT * FROM events WHERE user_id = 123 -- Use integer instead of string
Use appropriate type conversion functions¶
Use ClickHouse's built-in conversion functions:
Fix: use conversion functions
SELECT toDate('2024-01-01') as date WHERE date > toDate('2023-01-01') -- Convert to Date type
Fix array type consistency¶
Ensure arrays contain consistent types:
Fix: consistent array types
SELECT [1, 2, 3] as int_array -- All integers SELECT ['a', 'b', 'c'] as string_array -- All strings
Common patterns and solutions¶
String to numeric conversion¶
Convert strings to appropriate numeric types:
String to numeric conversion
-- Convert string to integer SELECT * FROM events WHERE user_id = toUInt64('123') -- Convert string to float SELECT * FROM metrics WHERE value = toFloat64('123.45') -- Convert string to decimal SELECT * FROM transactions WHERE amount = toDecimal64('123.45', 2)
Date and time conversions¶
Handle date and time type conversions:
Date and time conversions
-- Convert string to date SELECT * FROM events WHERE event_date = toDate('2024-01-01') -- Convert string to datetime SELECT * FROM events WHERE timestamp = toDateTime('2024-01-01 10:00:00') -- Convert timestamp to date SELECT * FROM events WHERE toDate(timestamp) = toDate('2024-01-01')
Array type handling¶
Ensure array type consistency:
Array type handling
-- Convert array elements to consistent types SELECT arrayMap(x -> toUInt64(x), ['1', '2', '3']) as int_array -- Filter arrays by type SELECT arrayFilter(x -> isUInt64(x), [1, '2', 3]) as filtered_array -- Convert mixed arrays to strings SELECT arrayMap(x -> toString(x), [1, '2', 3.0]) as string_array
Function argument type conversion¶
Convert function arguments to expected types:
Function argument conversion
-- Convert string to date for date functions SELECT toYYYYMM(toDate('2024-01-01')) as year_month -- Convert numeric to string for string functions SELECT length(toString(12345)) as string_length -- Convert string to array for array functions SELECT has(arrayMap(x -> toUInt64(x), ['1', '2', '3']), 2) as has_value
Tinybird-specific notes¶
In Tinybird, CANNOT_CONVERT_TYPE errors often occur when:
- Data Sources have type mismatches
- Pipe transformations use wrong data types
- API endpoints receive data with unexpected types
- Materialized Views have type conflicts
To debug in Tinybird:
- Check Data Source schema for type definitions
- Verify Pipe transformation data types
- Ensure API input validation matches expected types
- Review Materialized View type consistency
In Tinybird, use the Data Source preview to identify type mismatches before they cause errors.
Best practices¶
Type consistency¶
- Always use consistent data types in your schema
- Validate data types before insertion
- Use explicit type casting when needed
- Document expected data types
Data validation¶
- Implement input validation in your application
- Check data types before processing
- Use appropriate default values for missing data
- Handle type conversion errors gracefully
Schema design¶
- Choose appropriate data types for your use case
- Consider storage and performance implications
- Use nullable types when appropriate
- Plan for future data type changes
Configuration options¶
Type conversion settings¶
Type conversion settings
-- Check type conversion settings SELECT name, value, description FROM system.settings WHERE name LIKE '%type%' OR name LIKE '%convert%'
Strict type checking¶
Strict type checking
-- Enable strict type checking SET strict_type_checking = 1; -- Disable automatic type conversion SET allow_experimental_object_type = 0;
Type inference¶
Type inference settings
-- Allow type inference for literals SET allow_experimental_infer_schema = 1; -- Enable automatic type detection SET allow_experimental_auto_type_inference = 1;
Alternative solutions¶
Use type-safe functions¶
Use functions that handle type conversion automatically:
Type-safe functions
-- Use toTypeOrNull for safe conversion SELECT toTypeOrNull('123', 'UInt64') as safe_int -- Use toTypeOrZero for default values SELECT toTypeOrZero('invalid', 'UInt64') as default_int -- Use toTypeOrDefault with custom default SELECT toTypeOrDefault('invalid', 'UInt64', 0) as custom_default
Implement type validation¶
Add type validation in your application:
Type validation
-- In your application, validate types before querying -- Example pseudo-code: -- -- def validate_user_id(user_id): -- try: -- if isinstance(user_id, str): -- return int(user_id) -- elif isinstance(user_id, int): -- return user_id -- else: -- raise ValueError(f"Invalid user_id type: {type(user_id)}") -- except ValueError: -- raise ValueError(f"Invalid user_id value: {user_id}")
Use dynamic type handling¶
Handle types dynamically in your queries:
Dynamic type handling
-- Use CASE statements for type-dependent logic SELECT CASE WHEN isString(user_id) THEN toUInt64(user_id) WHEN isUInt64(user_id) THEN user_id ELSE 0 END as safe_user_id FROM events
Monitoring and prevention¶
Type error tracking¶
Type error monitoring
-- Monitor type conversion errors -- Example pseudo-code: -- -- def track_type_error(operation, expected_type, actual_type, value): -- logger.error(f"Type conversion failed: {operation}") -- logger.error(f"Expected: {expected_type}, Got: {actual_type}") -- logger.error(f"Value: {value}") -- -- # Track error metrics -- increment_counter('type_conversion_errors', { -- 'operation': operation, -- 'expected_type': expected_type, -- 'actual_type': actual_type -- })
Schema validation¶
Schema validation
-- Validate table schema for type consistency SELECT table, name, type, default_expression FROM system.columns WHERE database = currentDatabase() AND table = 'your_table_name' ORDER BY position
Data quality checks¶
Data quality monitoring
-- Check for type inconsistencies in data SELECT column_name, COUNT(*) as total_rows, COUNT(CASE WHEN value IS NULL THEN 1 END) as null_count, COUNT(CASE WHEN value = '' THEN 1 END) as empty_string_count FROM your_table GROUP BY column_name