Type mismatch troubleshooting¶
Common issues and solutions for type mismatches in ClickHouse and Tinybird.
Common errors¶
TYPE_MISMATCH¶
Error: TYPE_MISMATCH: Cannot convert String to UInt32
Cause: Trying to use incompatible data types in operations
Solution: Cast to appropriate type
-- Wrong SELECT numeric_column + string_column FROM events -- Correct SELECT numeric_column + toUInt32(string_column) FROM events
NO_COMMON_TYPE¶
Error: NO_COMMON_TYPE: There is no supertype for types String and UInt32
Cause: No common type for operation
Solution: Explicitly cast to common type
-- Cast both to string for concatenation SELECT toString(numeric_column) || string_column FROM events
Type conversion issues¶
String to numeric conversion¶
Issue: Converting strings to numbers with invalid data
Solution: Use safe conversion functions
-- Use safe conversion SELECT toUInt32OrNull(string_column) as safe_number FROM events
Date type mismatches¶
Issue: Mixing different date types
Solution: Use consistent date types
-- Convert to consistent date type SELECT toDate(date_column) as consistent_date FROM events
Schema design issues¶
Inconsistent column types¶
Issue: Same logical data with different types across tables
Solution: Standardize column types
-- Use consistent types across tables -- Instead of: table1.id (String), table2.id (UInt32) -- Use: table1.id (UInt32), table2.id (UInt32)
Type inference problems¶
Issue: ClickHouse inferring wrong types from data
Solution: Explicitly specify column types
-- Explicitly specify types in schema CREATE TABLE events ( id UInt32, value Float64, timestamp DateTime ) ENGINE = MergeTree()
Best practices¶
- Use explicit types - Don't rely on type inference
- Use safe conversions - Use
toTypeOrNull()
functions - Standardize types - Use consistent types across tables
- Validate data - Check data before type conversions
- Document types - Keep track of expected data types