Type mismatch troubleshooting

Common issues and solutions for type mismatches in ClickHouse and Tinybird.

Common errors

TYPE_MISMATCH

Error: TYPE_MISMATCH: Cannot convert String to UInt32

Cause: Trying to use incompatible data types in operations

Solution: Cast to appropriate type

-- Wrong
SELECT numeric_column + string_column FROM events

-- Correct
SELECT numeric_column + toUInt32(string_column) FROM events

NO_COMMON_TYPE

Error: NO_COMMON_TYPE: There is no supertype for types String and UInt32

Cause: No common type for operation

Solution: Explicitly cast to common type

-- Cast both to string for concatenation
SELECT toString(numeric_column) || string_column FROM events

Type conversion issues

String to numeric conversion

Issue: Converting strings to numbers with invalid data

Solution: Use safe conversion functions

-- Use safe conversion
SELECT toUInt32OrNull(string_column) as safe_number
FROM events

Date type mismatches

Issue: Mixing different date types

Solution: Use consistent date types

-- Convert to consistent date type
SELECT toDate(date_column) as consistent_date
FROM events

Schema design issues

Inconsistent column types

Issue: Same logical data with different types across tables

Solution: Standardize column types

-- Use consistent types across tables
-- Instead of: table1.id (String), table2.id (UInt32)
-- Use: table1.id (UInt32), table2.id (UInt32)

Type inference problems

Issue: ClickHouse inferring wrong types from data

Solution: Explicitly specify column types

-- Explicitly specify types in schema
CREATE TABLE events (
  id UInt32,
  value Float64,
  timestamp DateTime
) ENGINE = MergeTree()

Best practices

  1. Use explicit types - Don't rely on type inference
  2. Use safe conversions - Use toTypeOrNull() functions
  3. Standardize types - Use consistent types across tables
  4. Validate data - Check data before type conversions
  5. Document types - Keep track of expected data types